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COUNTEREXAMPLE TO THE TANGHERLINI ARGUMENT*
W. Rindler

Southwest Center for Advanced Studies
Dallas, Texas

Abstract: Tangherlini has stated a set of postulates
which lead to Schwarzschild's metric without the use
of field equations. These postulates are shown to be
inconsistent when applied to the parallel vacuum field.

|

' By an odd coincidence, Schiff's eight-year-old paper,
and some others, purporting to obtain from the equivalence
principle the general-relativistic bending of light (or, what
amounts to the same thing, the coefficients of Schwarzschild's
metric to first order) were recently criticized in these pages in
two separate articles, one by Sacks and Ball? the other by me.

In their conclusion Sacks and Ball refer with apparent concurrence
to a set of postulates of Tangherlini4 which undoubtably does

yield the Schwarzschild metric to first order without the use of

field equations. It is my purpose here to show that these.

postulates work for the Schwarzschild metric only accidentally,
since they are inconsistent in another equally simply situation.

I use the same counterexample as for the Lenz-Schiff argument,

namely the static parallel vacuum field with metric

2

2 _ de - dz= , .

d82 = deTz - dX
which is related to the usual Minkowski metric

ds2 = dt2 - dx2 - dy2 - sz

M ek [oF)= 657
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by the coordinate transformation
x = XcoshT , y =Y, z= 2, t = XsinhT . (3)

Tangherlini's chief postulate is that in a static field

the "acceleration" of a particle moving geodetically in the direction

of the field should depend on position only. However, he defines
acceleration in a somewhat unusual way as the second derivative of
the space variable with respect to proper time. (With coordinate
time, instead, the postulate is false in the case of Schwarzschild
space.) As shown by Tangherlini in the spherically symmetric case,
the following is true also in the "linear" case, i. e., for static
metrics without cross terms whose coefficients depend on one spatial
coordinate only (say xl): for geodeﬁic.motion in the xl direction
21

dx /ds2 is velocity-independent if and only if 850211 is constant,

which can be normalized by a simple change of time scale to

80811 ~ L , ) (4)

(See Appendix below.) The unique coordinate transformation which

casts the metric (1) into the required form is
X" =2, . (5)
whereupon it becomes
2 2 2 2

ds? = 2edT? - (1/28)de? - av? - az® . 6)

Since a particle moving freely (i. e., geodetically) along the x
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axis of Minkowski space satisfies the equations

dx/dt = v = constant, ds2 = (1 - v2)dt2 , @)
and since Egqs. (3) and (5) imply

26 = X" = x7 - t7

it follows that, for a particle moving geodetically in the &

direction,

a?erac? = v% -1, d%eas? = -1, (8)

Tangherlini's acceleration for a free particle in the parallel
field (6) is therefore constant, as anticipated. But, by another
postulate, he equates his with Newton;s acceleration in the field.
It is now that an inconsistency appears: the actual force (or

proper acceleration) felt by an observer at rest in the parallel

. . {
field is well known to be 1/X, i. e., l/(2£)/1 , and not constant.

In fact, it becomes infinite at £ = O.

It could perhaps be argued that the "Newtonian‘force"
should be calculated by apﬁlying Gauss's theorem to a bundle of
1inés of force in the familiar way, which would indeed yield a
constant force in the parallel field and thus save Tangherlini's

postulates still in this case. But I would regard this as rather

far-fetched.



Appendix
We here derive the condition (4). Consider a
metric

ds? = -a(axh)? - BaxD)? - ca)? + paxH?

with A, B, C, D fonctions of xl only. The x4 geodesic equation
is
G+ e e =0, ©

where a prime denotes d/ds. Consulting a list of I''s (e. g.,
Dingle's list, reproduced in R. C. Tolman, Relativity,

Thermodynamics, and Cosmology, Oxford University Press, Oxford,

England, 1934, page 254), we find that the only nonzero Fij is

FiA = (dD/dxl)/ZD. Writing t for x4, Eq. (9) thus becomes

t" + (1/pD)p't' =0 ,
or, on integrating,
»' t' = k/D , (10)

where k is evidently velocity-dependent, being the only disposable
constant. If we write x for xl and substitute Eq. (10) into the

2
metric with x = x3 = 0, we get

1= -ax'2 + K2/p , ' (11)

whence



e T

We see that x" will be velocity-independent if and only if AD is
constant, which is equivalent to Eq. (4). That Eqs. (10) and (11)
(supplemented by x2 = x3 = 0) indeed specify a geodesic becomes
evident on checking the xz and x3 geodesic equations: since
o=t =1 =0 (u = 2, 3), they are satisfied ; and three

11 44 14 ? ? ?

geodesic equations suffice to determine a geodesic.
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